
1

Design Patterns In Java Bob Tarr

Dynamic
Proxies
In Java

 Bob TarrDesign Patterns In Java Dynamic Proxies In Java
22

Dynamic ProxiesDynamic Proxies

l Proxy objects are useful in many situations to act as an
intermediary between a client object and a target object

l Usually, the proxy class is already available as Java bytecodes,
having been compiled from the Java source file for the proxy
class

l When needed, the bytecodes for the proxy class are loaded into
the Java Virtual Machine and proxy objects can then be
instantiated

l But, in some circumstances, it is useful to dynamically generate
the bytecodes for the proxy class at runtime

l This module will look at the techniques for dynamically
generating proxies in Java and the benefits of doing so

2

 Bob TarrDesign Patterns In Java Dynamic Proxies In Java
33

Vehicle Example With No ProxyVehicle Example With No Proxy

l First, let's show a client interacting with a target object directly

l Suppose we have an IVehicle interface as follows:

 /**

 * Interface IVehicle.

 */

 public interface IVehicle {

 public void start();

 public void stop();

 public void forward();

 public void reverse();

 public String getName();

 }

 Bob TarrDesign Patterns In Java Dynamic Proxies In Java
44

Vehicle Example With No Proxy (Continued)Vehicle Example With No Proxy (Continued)

l Here's a Car class that implements the IVehicle interface:

 /**

 * Class Car

 */

 public class Car implements IVehicle {

 private String name;

 public Car(String name) {this.name = name;}

 public void start() {

 System.out.println("Car " + name + " started");

 }

 // stop(), forward(), reverse() implemented similarly.

 // getName() not shown.

 }

3

 Bob TarrDesign Patterns In Java Dynamic Proxies In Java
55

Vehicle Example With No Proxy (Continued)Vehicle Example With No Proxy (Continued)

/**
 * Class Client1.
 * Interacts with a Car Vehicle directly.
 */
public class Client1 {

 public static void main(String[] args) {

 IVehicle v = new Car("Botar");
 v.start();
 v.forward();
 v.stop();
 }
}

ClientClient

CarCar

(IVehicle)(IVehicle)

start()start()

forward()forward()

stop()stop()

 Bob TarrDesign Patterns In Java Dynamic Proxies In Java
66

Vehicle Example With No Proxy (Continued)Vehicle Example With No Proxy (Continued)

l Output for the vehicle example with no proxy:

 Car Botar started

 Car Botar going forward

 Car Botar stopped

4

 Bob TarrDesign Patterns In Java Dynamic Proxies In Java
77

Vehicle Example With ProxyVehicle Example With Proxy

l Now let's have the client interact with the target object through a
proxy

l Remember that the main intent of a proxy is to control access to
the target object, rather than to enhance the functionality of the
target object

l Ways that proxies can provide access control include:
é Synchronization

é Authentication

é Remote Access

é Lazy instantiation

 Bob TarrDesign Patterns In Java Dynamic Proxies In Java
88

Vehicle Example With Proxy (Continued)Vehicle Example With Proxy (Continued)

l Here's our VehicleProxy class:

 /**
 * Class VehicleProxy.

 */

 public class VehicleProxy implements IVehicle {

 private IVehicle v;

 public VehicleProxy(IVehicle v) {this.v = v;}

 public void start() {

 System.out.println("VehicleProxy: Begin of start()");

 v.start();

 System.out.println("VehicleProxy: End of start()");

 }

 // stop(), forward(), reverse() implemented similarly.

 // getName() not shown.

 }

5

 Bob TarrDesign Patterns In Java Dynamic Proxies In Java
99

Vehicle Example With Proxy (Continued)Vehicle Example With Proxy (Continued)

/**

 * Class Client2.

 * Interacts with a Car Vehicle through a VehicleProxy.

 */

public class Client2 {

 public static void main(String[] args) {

 IVehicle c = new Car("Botar");

 IVehicle v = new VehicleProxy(c);

 v.start();

 v.forward();

 v.stop();

 }

}

ClientClient

CarCar

(IVehicle)(IVehicle)

ProxyProxy

start()start()

forward()forward()

stop()stop()

start()start()

forward()forward()

stop()stop()

 Bob TarrDesign Patterns In Java Dynamic Proxies In Java
1010

Vehicle Example With Proxy (Continued)Vehicle Example With Proxy (Continued)

l Output for the vehicle example with a proxy:

 VehicleProxy: Begin of start()

 Car Botar started

 VehicleProxy: End of start()

 VehicleProxy: Begin of forward()

 Car Botar going forward

 VehicleProxy: End of forward()

 VehicleProxy: Begin of stop()

 Car Botar stopped

 VehicleProxy: End of stop(

6

 Bob TarrDesign Patterns In Java Dynamic Proxies In Java
1111

Dynamic Proxies In JavaDynamic Proxies In Java

l Java 1.3 supports the creation of dynamic proxy classes and
instances

l A dynamic proxy class is a class that implements a list of
interfaces specified at runtime when the class is created

l A proxy interface is an interface that is implemented by a proxy
class

l A proxy instance is an instance of a proxy class

l Each proxy instance has an associated invocation handler object,
which implements the interface InvocationHandler

l A method invocation on a proxy instance through one of its proxy
interfaces will be dispatched to the invoke() method of the
instance's invocation handler

 Bob TarrDesign Patterns In Java Dynamic Proxies In Java
1212

Dynamic Proxy ClassDynamic Proxy Class

l Proxy classes are created using the new java.lang.reflect.Proxy
class

l Proxy classes are public, final, non-abstract subclasses of
java.lang.reflect.Proxy

l The unqualified name of a proxy class is unspecified. The space
of class names that begin with the string "$Proxy" should be,
however, reserved for proxy classes.

l A proxy class implements exactly the interfaces specified at its
creation

l Since a proxy class implements all of the interfaces specified at
its creation, invoking getInterfaces() on its Class object will return
an array containing the same list of interfaces (in the order
specified at its creation)

7

 Bob TarrDesign Patterns In Java Dynamic Proxies In Java
1313

Dynamic Proxy ClassDynamic Proxy Class

l Each proxy class has one public constructor that takes one
argument, an implementation of the interface InvocationHandler,
to set the invocation handler for a proxy instance

l Rather than having to use the reflection API to access the public
constructor, a proxy instance can be also be created by calling the
Proxy.newInstance() method, which combines the actions of
calling Proxy.getProxyClass() with invoking the constructor with
an invocation handler

 Bob TarrDesign Patterns In Java Dynamic Proxies In Java
1414

The java.lang.reflect.Proxy ClassThe java.lang.reflect.Proxy Class

l public static Class getProxyClass(ClassLoader loader,
 Class[] interfaces)

throws IllegalArgumentException
é Creates a proxy class defined in the specified class loader and which

implements the specified interfaces. Returns the java.lang.Class object for
the generated proxy class.

l protected Proxy(InvocationHandler ih)
é Constructs a new Proxy instance from a subclass (typically, a dynamic

proxy class) with the specified value for its invocation handler

l public static boolean isProxyClass(Class c)
é Returns true if and only if the specified class was dynamically generated to

be a proxy class using the getProxyClass() method or the
newProxyInstance() method of the Proxy class

8

 Bob TarrDesign Patterns In Java Dynamic Proxies In Java
1515

The java.lang.reflect.Proxy ClassThe java.lang.reflect.Proxy Class

l public static Object newProxyInstance(ClassLoader loader,
 Class[] interfaces,
 InvocationHandler ih)

throws IllegalArgumentException
é Creates a proxy class defined in the specified class loader and which

implements the specified interfaces. In addition, creates an instance of the
proxy by invoking the one public proxy constructor which sets the
associated invocation handler to the specified handler. Returns a reference
to the proxy instance.

é Proxy.newProxyInstance(cl, interfaces, ih);
is equivalent to
Proxy.getProxyClass(cl,
interfaces).getConstructor(new Class[] {
InvocationHandler.class }).newInstance(new
Object[] {ih});

 Bob TarrDesign Patterns In Java Dynamic Proxies In Java
1616

The java.lang.reflect.Proxy ClassThe java.lang.reflect.Proxy Class

l public static InvocationHandler getInvocationHandler
(Object proxy)
throws IllegalArgumentException

é Returns the invocation handler for the specified proxy instance

9

 Bob TarrDesign Patterns In Java Dynamic Proxies In Java
1717

The java.lang.reflect.InvocationHandler InterfaceThe java.lang.reflect.InvocationHandler Interface

l Each proxy instance has an associated invocation handler. When a
method is invoked on a proxy instance, the method invocation is
encoded and dispatched to the invoke() method of its invocation
handler

l public Object invoke(Object proxy, Method method,
 Object[] args) throws Throwable

é Processes a method invocation on a proxy instance and returns the result.
The proxy parameter is the proxy instance that the method was invoked on.
The method parameter is the Method instance corresponding to the
interface method invoked on the proxy instance. The args parameter is an
array of objects containing the values of the arguments passed in the
method invocation on the proxy instance, or null if the interface method
takes no arguments.

 Bob TarrDesign Patterns In Java Dynamic Proxies In Java
1818

Vehicle Example With Dynamic ProxyVehicle Example With Dynamic Proxy

l To do our vehicle example with a dynamic proxy, we first need
an invocation handler:

 import java.lang.reflect.*;

 /**

 * Class VehicleHandler.

 */

 public class VehicleHandler implements InvocationHandler {

 private IVehicle v;

 public VehicleHandler(IVehicle v) {this.v = v;}

 public Object invoke(Object proxy, Method m, Object[] args)

 throws Throwable {

 System.out.println("Vehicle Handler: Invoking " +

 m.getName());

 return m.invoke(v, args);

 }

 }

10

 Bob TarrDesign Patterns In Java Dynamic Proxies In Java
1919

Vehicle Example With Dynamic Proxy (Continued)Vehicle Example With Dynamic Proxy (Continued)

ClientClient

CarCar

(IVehicle)(IVehicle)

ProxyProxy

InvocationInvocation

HandlerHandler

invoke()invoke()

start()start()

forward()forward()

stop()stop()

"invoke()""invoke()"

l Notice how we use the Reflection API to invoke the proper
method on our target object:

m.invoke(v, args);

 Bob TarrDesign Patterns In Java Dynamic Proxies In Java
2020

Vehicle Example With Dynamic Proxy (Continued)Vehicle Example With Dynamic Proxy (Continued)

import java.lang.reflect.*;

/**

 * Class Client3.

 * Interacts with a Car Vehicle through a dynamically

 * generated VehicleProxy.

 */

public class Client3 {

 public static void main(String[] args) {

 IVehicle c = new Car("Botar");

 ClassLoader cl = IVehicle.class.getClassLoader();

 IVehicle v = (IVehicle) Proxy.newProxyInstance(cl,

 new Class[] {IVehicle.class}, new VehicleHandler(c));

 v.start();

 v.forward();

 v.stop();

 }

}

11

 Bob TarrDesign Patterns In Java Dynamic Proxies In Java
2121

Vehicle Example With Dynamic Proxy (Continued)Vehicle Example With Dynamic Proxy (Continued)

l Output for the vehicle example with a dynamic proxy:

 Vehicle Handler: Invoking start

 Car Botar started

 Vehicle Handler: Invoking forward

 Car Botar going forward

 Vehicle Handler: Invoking stop

 Car Botar stopped

 Bob TarrDesign Patterns In Java Dynamic Proxies In Java
2222

Uses For Dynamic ProxiesUses For Dynamic Proxies

l In the Vehicle example, there seems to be little benefit in
dynamically generating the proxy:

é We still had to write the invocation handler class!

é There is now another object layer between the client and the target!

l So where would we use dynamic proxies??
é Generic Delegation

é Dynamic generation of proxies (stubs) for remote objects

12

 Bob TarrDesign Patterns In Java Dynamic Proxies In Java
2323

Logged Vehicle ExampleLogged Vehicle Example

l To illustrate the idea of Generic Delegation, let's add a logging
capability to our Vehicle Example

l Suppose that we want to log each action (start, stop, etc.) that we
perform on a Car, but we do not want to modify the existing Car
code

l Sounds like a job for the Decorator Pattern!

l We'll write a LoggedVehicle class that implements the IVehicle
interface, logs each requested action and then delegates the actual
action to a contained IVehicle object

l The essence of the Decorator Pattern is delegation through
composition!

 Bob TarrDesign Patterns In Java Dynamic Proxies In Java
2424

Logged Vehicle Example (Continued)Logged Vehicle Example (Continued)

l Here's the LoggedVehicle class:
 /**

 * Class LoggedVehicle.

 */

 public class LoggedVehicle implements IVehicle {

 private IVehicle v;

 public LoggedVehicle(IVehicle v) {this.v = v;}

 public void start() {

 System.out.println("Log Entry: Vehicle " + v.getName() +

 " started");

 v.start();

 }

 // stop(), forward(), reverse() implemented similarly.

 // getName() not shown.

 }

13

 Bob TarrDesign Patterns In Java Dynamic Proxies In Java
2525

Logged Vehicle Example (Continued)Logged Vehicle Example (Continued)

/**

 * Class Client4.

 * Interacts with a Car Vehicle through a Logging Decorator.

 */

public class Client4 {

 public static void main(String[] args) {

 IVehicle c = new Car("Botar");

 IVehicle v = new LoggedVehicle(c);

 v.start();

 v.forward();

 v.stop();

 }

}

ClientClient

CarCar

(IVehicle)(IVehicle)

LoggedVehicleLoggedVehicle

start()start()

forward()forward()

stop()stop()

start()start()

forward()forward()

stop()stop()

 Bob TarrDesign Patterns In Java Dynamic Proxies In Java
2626

Logged Vehicle Example (Continued)Logged Vehicle Example (Continued)

l Output for the vehicle example with a logging decorator:

 Log Entry: Vehicle Botar started

 Car Botar started

 Log Entry: Vehicle Botar going forward

 Car Botar going forward

 Log Entry: Vehicle Botar stopped

 Car Botar stopped

l Notice how similar this example is to the simple proxy example!
The difference between the Proxy Pattern and the Decorator
Pattern is one of intent: Proxy provides access control, while
Decorator adds functionality, in this case a logging capability.

14

 Bob TarrDesign Patterns In Java Dynamic Proxies In Java
2727

Logged Vehicle Example (Continued)Logged Vehicle Example (Continued)

l While the LoggedVehicle decorator class provides a logging
capability for any class that implements the IVehicle interface,
there are two drawbacks to this approach:

é It was tedious to have to implement all of the methods of the IVehicle
interface in the LoggedVehicle class

é Logging is a generic capability that we may want to add to other interfaces
in which case we have to write another wrapper class

l Both of these drawbacks can be overcome by using dynamic
proxies

l The dynamic proxy will automatically implement all of the
methods of the interface we specify, relieving us of the tedium of
doing this implementation ourselves

l And the reflective method invocation in our invocation handler
supports the desired generic delegation!

 Bob TarrDesign Patterns In Java Dynamic Proxies In Java
2828

Generic Delegation ExampleGeneric Delegation Example

l Here is a generic logger class:
 import java.lang.reflect.*;

 /**

 * Class GenericLogger.

 */

 public class GenericLogger implements InvocationHandler {

 private Object target;

 public GenericLogger(Object target) {this.target = target;}

 public Object invoke(Object proxy, Method m, Object[] args)

 throws Throwable {

 System.out.println("Generic Logger Entry: Invoking " +

 m.getName());

 return m.invoke(target, args);

 }

 }

15

 Bob TarrDesign Patterns In Java Dynamic Proxies In Java
2929

Generic Delegation Example (Continued)Generic Delegation Example (Continued)

import java.lang.reflect.*;

/**

 * Class Client5.

 * Interacts with a Car Vehicle through a dynamically

 * generated proxy and a Generic Logger.

 */

public class Client5 {

 public static void main(String[] args) {

 IVehicle c = new Car("Botar");

 ClassLoader cl = IVehicle.class.getClassLoader();

 IVehicle v = (IVehicle) Proxy.newProxyInstance(cl,

 new Class[] {IVehicle.class}, new GenericLogger(c));

 v.start();

 v.forward();

 v.stop();

 }

}

 Bob TarrDesign Patterns In Java Dynamic Proxies In Java
3030

Generic Delegation Example (Continued)Generic Delegation Example (Continued)

l Output for the vehicle example with a generic logger:

 Generic Logger Entry: Invoking start

 Car Botar started

 Generic Logger Entry: Invoking forward

 Car Botar going forward

 Generic Logger Entry: Invoking stop

 Car Botar stopped

16

 Bob TarrDesign Patterns In Java Dynamic Proxies In Java
3131

Generic Delegation Example (Continued)Generic Delegation Example (Continued)

l The great thing about this generic logger is that it can be used to
add a logging capability to any interface!

l Consider an interface for shapes:

 /**

 * Interface IShape.

 */

 public interface IShape {

 public void draw();

 public void print();

 public void move();

 public void resize();

 }

 Bob TarrDesign Patterns In Java Dynamic Proxies In Java
3232

Generic Delegation Example (Continued)Generic Delegation Example (Continued)

import java.lang.reflect.*;

/**

 * Class Client6.

 * Interacts with a Rectangle Shape through a dynamically

 * generated proxy and a Generic Logger.

 */

public class Client6 {

 public static void main(String[] args) {

 IShape rect = new Rectangle();

 ClassLoader cl = IShape.class.getClassLoader();

 IShape s = (IShape) Proxy.newProxyInstance(cl,

 new Class[] {IShape.class}, new GenericLogger(rect));

 s.draw();

 s.move();

 s.resize();

 }

}

17

 Bob TarrDesign Patterns In Java Dynamic Proxies In Java
3333

Generic Delegation Example (Continued)Generic Delegation Example (Continued)

l Output for the shape example with a generic logger:

 Generic Logger Entry: Invoking draw

 Rectangle drawn

 Generic Logger Entry: Invoking move

 Rectangle moved

 Generic Logger Entry: Invoking resize

 Rectangle resized

